Diagonalization Principle

Let S be a non-empty set and R any relation on S.
Let
$D=\{\mathrm{a} \in \mathrm{A} \mid(\mathrm{a}, \mathrm{a}) \in \mathrm{r}\}$
For each $\mathrm{a} \epsilon \mathrm{A}$, let $R_{a}=\{\mathrm{b} \mid(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$
Then diagonalization principle states that D is different from each R_{a}.
OR
Diagonalization principle states that the complement of the diagonal is different from each row

For example,
Let $S=\{a, b, c, d\}$
$R=\{(a, a),(b, c),(b, d),(c, a),(c, c),(c, d),(d, a),(d, b)\}$
The above relation R is shown in matrix from as follows:

Diagonal elements are marked.
From the figure,
$R_{a}=\{a\}$
$R_{b}=\{c, d\}$
$\mathrm{R}_{\mathrm{c}}=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{R}_{\mathrm{d}}=\{\mathrm{a}, \mathrm{b}\}$
Diagonal $\mathrm{D}=\{\mathrm{a}, \mathrm{b}\}$
Complement of Diagonal, $D^{\prime}=\{b, d\}$

If we compare each of the above R_{a}, R_{b}, R_{c} and R_{d} with D, we can see that D is different from each.

Thus complement of the diagonal is distinct from each row.

Note:
Following information is needed to solve the example given below:
9 's complement of a number 9's complement of 276 is 723 .
9 's complement of 425 is 574 .
9's complement of 793 is 206.

Example 1:

Prove that the set of real numbers between 0 and 1 is uncountable.
An example for a real number between 0 and 1 is 0.34276
Let us represent a real number between 0 and 1 as
$X=0 . X_{0} X_{1} X_{2} X_{3} \ldots$.
where each x_{i} is a decimal digit.

Let $f(k)$ be an arbitrary function from natural numbers to the set $[0,1]$.
We can arrange the elements in a 2d array as,

$f(0):$	$:$	X_{00}	X_{01}	X_{02}	X_{03}	-	-	-	
$f(1):$	$:$	X_{10}	X_{11}	X_{12}	X_{13}	-	-	-	
$f(2):$	$:$	X_{20}	X_{21}	X_{22}	X_{23}	-	-	-	
---			-	-					
--			$X_{n 0}$	$X_{n 1}$	$X_{n 2}$	$X_{n 3}$	-	-	-

where $x_{n i}$ is the $\mathrm{i}^{\text {th }}$ digit in the decimal expansion of $\mathrm{f}(\mathrm{n})$.

Next we find the complement of the diagonal (9's complement) as follows:
$\mathrm{Y}=. \mathrm{y}_{0} \mathrm{y}_{1} \mathrm{y}_{2}$ \qquad
where $y_{i}=9$'s complement of x_{ii}
(Find out the 9's complement of $\mathrm{x}_{00}, \mathrm{x}_{11}, \mathrm{x}_{22}, \mathrm{x}_{33} \ldots \mathrm{x}_{\mathrm{nn}}$
From the diagonalisation principle, it is clear that the complement of the diagonal is different from each row.

Here it is clear that Y is different from each $f(i)$ in at least one digit. $Y \neq f(i)$. Hence Y cannot be present in the above array.

This means that the set of real numbers between 0 and 1 is countably infinite or not countable.

For instance suppose we arrange the real numbers as,
$f(0)$:

- 942 4---
$f(1)$:
- 6362 --
f(2):
. 286 4--
$f(3) \quad . \quad 6 \quad 5 \quad 3 \quad 2-\cdots$
$f(n): \quad . \quad 41507-1$
Here the diagonal is 9362

The complement (9's complement) of the diagonal is 0637
The real number .0637... is not in the above table.
Thus it is clear that this value is distinct from each row, $f(0), f(1), f(2), \ldots f(n)$.

